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Fig. 2a: Hourly decompositon of LoCo
mixing diagram from 2-meter T and
Q at ARM SGP site in models and data. 

Fig. 2b: Diurnal cycle of each component
in the surface and 2-m atmospheric response
vectors shown at left.

3. Details at ARM SGP imply SP alters atmospheric resonse vector.
SP introduces a desirous but 
exaggerated counterclock-
wise rotation of the 2-m at-
mospheric response vector in 
the q-T plane, from a morning 
heating- to afternoon drying-
dominated regime.

Relative to ARM data, the di-
urnal moisture cycle is too ex-
treme in SP, and an unrealistic 
“atmospheric response” of 
early morning moistening 
occurs.

5. Robust effects of SP on near-surface PBL diurnal dynamics.

1. Motivation, questions and strategy
Explicit convection can modify physics of land-atmosphere interaction (Hohenegger et al. 
2009). Yet the  consequences of using cloud superparameterization (SP) for simulating the 
land/atmosphere interface in climate models have not been deeply explored. 

We have recently found that SP modi�es the rainfall Triggering Feedback Strength (TFS; 
Findell et al. 2011) over North America and that SP ampli�es the global Bowen ratio and its 
rate of increase under climate change simulations. Understanding why requires process 
level analysis on the diurnal timescale of �ux partitioning / PBL feedback.

Questions: How does SP modify diurnal PBL energetics of the mean summer day? Does SP 
modify the sensitivity of PBL energetics to land surface conditions?

Strategy: Apply a Bettsian mixing diagram approach under the LoCo philosophy of Santa-
nello et al. (2009). Compare climatologies of the mean summer day in SPCAM vs. CAM 
simulations globally & against ARM Best-estimate data at SGP.

Models: SPCAM3.5 and CAM3.5; semi-Lagrangian T42 exterior resolution; default 32-column / 4km interior resolution for 
its cloud resolving models; analysis of 15-year simulations. Data: ARM SGP Best-Estimate and MERGESONDE products.
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4. ..But actual bulk PBL energetics are insensitive to SP, 
 2-m state in LoCo is not a robust proxy for bulk PBL.

Fig. 3: As in Fig. 1 but using explicitly integrated PBL mean heat and moisture.

To ease comparison with data, 
the LoCo framework uses 2-
meter conditions as a proxy for 
the bulk PBL. 

But explicitly integrating PBL 
conditions tells a di�erent 
story. Comparing Figs. 1 & 3, 
the bulk PBL does not exhibit 
the systematic sensitivity to SP 
seen in Fig. 1, implying it is 
mostly a near-surface e�ect.

2. SP adds curvature to LoCo 2-m mixing diagrams

Fig. 1: LoCo mixing diagrams for JJA mean summer day for (red) SPCAM vs. (blue) CAM.

Systematic e�ect ob-
served over multiple 
land surfaces --  a 
stronger 
moistening/drying 
diurnal cycle in 
SPCAM than in CAM.

Fig. 4: Mean diurnal cycle at SGP of (left) PBL moisture, (center) its tendency
 and (right) the tendency due to moist convection plus vertical di�usion.
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Fig. 5: As in Fig. 4 but for the PBL heat content at SGP.
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the lowest model level 
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near-surface heating 
rates.
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SP introduces observed 
late morning surface-
ampli�ed drying, but rate 
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moisten the lowest model 
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6. SP doesn’t modify PBL sensivity to land surface moisture.
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Fig. 6: Explicitly integrated PBL-mean mixing diagrams in (red) 
SPCAM and (blue) CAM binned by evaporative fraction EF  for 
grid points at (top) Central US and (bottom) Central China.

Explicit convection has the capacity 
to alter land-atmosphere feedback 
under certain meteorological re-
gimes due to exotic entrainment 
feedbacks a�ecting PBL dynamics.

However, this does not lead to major 
emergent e�ects distinguishing the 
SPCAM. The sensitivity of bulk PBL 
diurnal energetics to land surface 
evaporative fraction in SPCAM 
mostly resembles that in CAM.

One regional e�ect of SP over the 
Central US is reducing the mean PBL 
moisture sensitivity to EF.
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7. Take-home points

We discover cloud superparameterization (SP) does not systematically modify bulk diurnal PBL energetics nor the 
atmospheric segment of land-atmosphere coupling as measured by the EF-sensitivity of diurnal PBL energetics.

Although one regional e�ect is to reduce the mean PBL moisture sensitivity to EF over the Central US.

We discover new e�ects of SP on near-surface diurnal variability in the PBL over most land surfaces:

SP strongly ampli�es diurnal heating and especially moistening in the model layer immediately adjacent to 
the land surface. The lowest model level’s state properties are less tightly coupled to overlying model levels 
than in the conventionally parameterized CAM.

Trapping of early morning surface �uxes in the lowest model layer of the cloud resolving models occurs.

Compared to ARM data, the early morning moistening in SPCAM is unrealistic but the emergence of late 
morning surface-ampli�ed drying is an improvement on the conventional CAM, albeit too exaggerated.

Regarding the Lo-Co model intercomparison methodology of Santanello et al. (2009): 

Caution is advised in interpreting 2-m T and q as a proxy for PBL-integrated energetics. 

Unfolding hourly time resolution in the surface/atmosphere decomposition method can be helpful; for us it 
helped �ngerprint origins of an important near-surface e�ect of superparameterization on the PBL state.


